Exposure to Heavy Ion Radiation Induces Persistent Oxidative Stress in Mouse Intestine
نویسندگان
چکیده
Ionizing radiation-induced oxidative stress is attributed to generation of reactive oxygen species (ROS) due to radiolysis of water molecules and is short lived. Persistent oxidative stress has also been observed after radiation exposure and is implicated in the late effects of radiation. The goal of this study was to determine if long-term oxidative stress in freshly isolated mouse intestinal epithelial cells (IEC) is dependent on radiation quality at a dose relevant to fractionated radiotherapy. Mice (C57BL/6J; 6 to 8 weeks; female) were irradiated with 2 Gy of γ-rays, a low-linear energy transfer (LET) radiation, and intestinal tissues and IEC were collected 1 year after radiation exposure. Intracellular ROS, mitochondrial function, and antioxidant activity in IEC were studied by flow cytometry and biochemical assays. Oxidative DNA damage, cell death, and mitogenic activity in IEC were assessed by immunohistochemistry. Effects of γ radiation were compared to (56)Fe radiation (iso-toxic dose: 1.6 Gy; energy: 1000 MeV/nucleon; LET: 148 keV/µm), we used as representative of high-LET radiation, since it's one of the important sources of high Z and high energy (HZE) radiation in cosmic rays. Radiation quality affected the level of persistent oxidative stress with higher elevation of intracellular ROS and mitochondrial superoxide in high-LET (56)Fe radiation compared to unirradiated controls and γ radiation. NADPH oxidase activity, mitochondrial membrane damage, and loss of mitochondrial membrane potential were greater in (56)Fe-irradiated mice. Compared to γ radiation oxidative DNA damage was higher, cell death ratio was unchanged, and mitotic activity was increased after (56)Fe radiation. Taken together our results indicate that long-term functional dysregulation of mitochondria and increased NADPH oxidase activity are major contributing factors towards heavy ion radiation-induced persistent oxidative stress in IEC with potential for neoplastic transformation.
منابع مشابه
Therapeutic and space radiation exposure of mouse brain causes impaired DNA repair response and premature senescence by chronic oxidant production
Despite recent epidemiological evidences linking radiation exposure and a number of human ailments including cancer, mechanistic understanding of how radiation inflicts long-term changes in cerebral cortex, which regulates important neuronal functions, remains obscure. The current study dissects molecular events relevant to pathology in cerebral cortex of 6 to 8 weeks old female C57BL/6J mice t...
متن کاملExposure to Antineoplastic Agents Induces Cytotoxicity in Nurse Lymphocytes: Role of Mitochondrial Damage and Oxidative Stress
Cytotoxicity and mitochondrial parameters were studied in isolated lymphocytes and their mitochondria obtained from occupationally exposed nurses through inhalation exposure to antineoplastic drugs and results were compared to those of unexposed nurses. The group of occupationally exposed nurses consisted of 50 individuals ranging in age from 30 to 35 years. The control group included 50 nurses...
متن کاملInduction of cancer stem-like cells in A549 cells after exposure to carbon ions and X-rays
Background: Cancer stem-like cells (CSCs) play a crucial role in the initiation, progression, and recurrence of cancer. Evidence indicates that the high linear energy transfer (LET) carbon ion beam is more effective against CSCs than the conventional X-ray beam. Carbon ion radiotherapy is considered as a promising cancer strategy, however, information about whether, or not, new CSCs are induced...
متن کاملSpace radiation exposure persistently increased leptin and IGF1 in serum and activated leptin-IGF1 signaling axis in mouse intestine
Travel into outer space is fraught with risk of exposure to energetic heavy ion radiation such as (56)Fe ions, which due to its high linear energy transfer (high-LET) characteristics deposits higher energy per unit volume of tissue traversed and thus more damaging to cells relative to low-LET radiation such as γ rays. However, estimates of human health risk from energetic heavy ion exposure are...
متن کاملExposure to Antineoplastic Agents Induces Cytotoxicity in Nurse Lymphocytes: Role of Mitochondrial Damage and Oxidative Stress
Cytotoxicity and mitochondrial parameters were studied in isolated lymphocytes and their mitochondria obtained from occupationally exposed nurses through inhalation exposure to antineoplastic drugs and results were compared to those of unexposed nurses. The group of occupationally exposed nurses consisted of 50 individuals ranging in age from 30 to 35 years. The control group included 50 nurses...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012